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Abstract

Purpose: We consider complex stochastic systems, such as supply chains, whose

dynamics are controlled by an unknown parameter, such as the arrival or service rates.

The purpose of this paper is to provide a simulation-based estimator of the unknown

parameter when only partially observed data on the underlying system are available.

Design/methodology/approach: The proposed method treats the unknown param-

eter as a random variable, and estimates the parameter by computing the conditional

expectation of the random variable given the partially observed data. We then express

the conditional expectation as a weighted sum of reverse conditional probabilities using

Bayes’ rule. The reverse conditional probabilities are estimated using simulation.

Findings: Our simulation studies indicate that the proposed estimator converges

to the true value of the conditional expectation as the computer time allocated to the

simulation increases. The proposed estimator is computed within a few seconds in all

of our numerical examples, which demonstrates its time efficiency.

Originality/value: Most of the existing methods for estimating an unknown param-

eter require a significant amount of simulation, causing long computation delays. The

proposed method requires a single simulation run for each candidate of the unknown

parameter. Thus, it is designed to carry a significantly reduced computational burden.

This feature will enable managers to use the proposed method when making real-time

decisions.

Keywords: statistical inference; parameter estimation; simulation; hidden Markov models;

supply chain management
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Figure 1: A simplified version of a manufacturer’s supply chain

1 Introduction

We consider the problem of estimating an unknown parameter for a stochastic process when

only partially observed data on such a process are available. This paper is motivated by a

manufacturer whose supply chain consists of multiple manufacturing plants with jobs being

transported from one plant to another. Figure 1 depicts a simplified version of such a

supply chain. In order to predict the future performance of the supply chain, a computer

simulation can be set up and run to provide estimates on future performance. One of the

challenges in this setting was that some of the parameters that are necessary to set up such a

simulation were not known, and only partial information on the supply chain was collected.

For example, the manufacturer needed to know the rate at which jobs were processed at

each plant in order to run a computer simulation, but the rate was not known in one of the

plants. On the other hand, some partial information, such as the total number of jobs either

being processed or waiting in queue at each plant, was observable on a daily basis. Thus,

the main problem that the manufacturer faced was how to estimate the unknown parameter

based on the partially observed data on his supply chain.

To answer the manufacturer’s question, we take the view that the system under considera-

tion can be simulated by updating a vector of real numbersXt for each t ∈ {· · · ,−1, 0, 1, · · · },
where Xt describes the internal state of the system at time t. Throughout this paper, the

stochastic process X = (Xt : −∞ < t <∞) is assumed to be a Markov chain in the steady

state. A stochastic process can be assumed to be in the steady-state, under certain con-

ditions, when it has evolved for a long period of time. It is reasonable to assume that X is

in the steady state since, in many applications, the system under consideration has been up

and running for a long period of time.
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We further assume that only part of Xt is observable and collected as data, and hence,

the observable process can be expressed as Y = (Yt : −∞ < t < ∞), where Yt = f(Xt) for

−∞ < t <∞ and some known function f . For example, Xt can be the total number of jobs

at each plant and the amount of time that has passed since service was initiated on a job

at each plant, and Yt can be the numbers of jobs in some (not all) of the plants at time t.

In order to simulate the system by updating Xt, we need to know certain parameters such

as the rate at which jobs are processed at each plant or the rate at which jobs arrive at

each plant. We assume that all of these parameters are known except for one, say θ∗. If we

assume that the current time is t = 0, the problem can be formulated as an estimation of θ∗

based on observed data Y0 = y0, Y−1 = y−1, · · · .
In our approach, we first treat θ∗ as a random variable θ that can take one of the values

in Θ = {θ1, · · · , θr}. Hence, our best guess on θ∗ given Y0 = y0, Y−1 = y−1, · · · is the

conditional expectation of θ given Y0 = y0, Y−1 = y−1, · · · , i.e., E(θ|Y0 = y0, Y−1 = y−1, · · · ).
We then realize that computing the conditional expectation on the full history Y0 = y0, Y−1 =

y−1, · · · is computationally challenging and sometimes impractical, and hence, we simplify

our problem as an estimation of θ based on Y0 = y0 only. Our problem thus boils down to

how to compute E(θ|Y0 = y0). We next rewrite E(θ|Y0 = y0) as follows (using Bayes’ rule):

E(θ|Y0 = y0) =
r∑
i=1

θiP(θ = θi|Y0 = y0)

=
r∑
i=1

θi

(
P(Y0 = y0|θ = θi)P(θ = θi)∑r
j=1 P(Y0 = y0|θ = θj)P(θ = θj)

)

=

∑r
i=1 θiP(Y0 = y0|θ = θi)P(θ = θi)∑r
i=1 P(Y0 = y0|θ = θi)P(θ = θi)

. (1.1)

We then suggest a way to estimate P(θ = θi) and P(Y0 = y0|θ = θi) through simulation. By

plugging these estimates into (1.1), we will be able to compute an estimator of E(θ|Y0 = y0).

Typically, a modeler has a rough idea of what the range of possible values of θ is. We

therefore assume that Θ is given to the modeler, and he draws a value from Θ uniformly.

Assuming that θ is uniformly distributed over Θ, (1.1) is further simplified to∑r
i=1 θiP(Y0 = y0|θ = θi)∑r
i=1 P(Y0 = y0|θ = θi)

(1.2)

and it remains to estimate P(Y0 = y0|θ = θi) through simulation. There are a couple of

challenges in estimating P(Y0 = y0|θ = θi) via simulation.
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1. How do we sample X0 from its steady–state distribution? Since Y0 = f(X0), one needs

to generate X0 in order to generate Y0. X0 is assumed to be in its steady state. In

general, the steady–state distribution of X is not available in a closed form. How can

we use simulation to sample X0 from its steady–state distribution?

2. If the event {Y0 = y0} occurs rarely given θ = θi for i ∈ {1, · · · , r}, how do we estimate

the probability of such an event in a time efficient way?

To answer 1, we use the following procedure. Fix θ = θi. Let X̃ = (X̃t : 1 ≤ t ≤ n) be a

Markov chain with the same transition probabilities as those of X when θ∗ = θi. We typically

generate X̃ by setting X̃1 at an arbitrary value and running X̃ forward using the transition

probabilities. As n, the length of simulation, gets longer, the distribution of X̃n gets closer

to the steady–state distribution of X. Once n is large enough so that the distribution of

X̃n is close to the steady–state distribution of X, one needs to count the number of times

Ỹn = f(X̃n) hits y in order to estimate P(Y0 = y0|θ = θi). If Y0 has a large state space and the

event {Y0 = y0} occurs rarely, we may need to generate many replications of (X̃1, · · · , X̃n)

in order to find an instance where Ỹn = y. This procedure can be time consuming. To

overcome this, we suggest the following remedy. Even in the instance where Ỹn does not

hit y, we compute the distance between Ỹn and y and assign an appropriate weight to

such an instance; the closer Ỹn is to y, the more weight is assigned to Ỹn. We express the

weight using a function K : R → R called the kernel function. For example, K(‖w − y‖)
can be assigned to the instance where Ỹn = w, where K(z) = (1/

√
2π) exp(−z2/(2λ2)) for

z ∈ R and some positive constant λ, or K(z) = 1/(2h) for −h ≤ z ≤ h and K(z) = 0

otherwise. (‖(x1, · · · , xd)‖ =
√
x21 + · · ·+ x2d for (x1, · · · , xd) ∈ Rd.) A natural step to

follow is to generate multiple replications of Ỹn and compute the average weight assigned

to these replications as an estimator of P(Y0 = y0|θ = θi). However, there is a significant

downside to this approach. Simulating (X̃t : 1 ≤ t ≤ n) multiple times is time consuming.

To tackle this issue, we note that generating one more time step in the X̃ process requires

much less time than starting a new simulation run of X̃. (For example, it takes an average

of 1.67 milliseconds to generate X̃1, · · · , X̃100 in the example in Section 3.3, while it takes

an average of 1.68 milliseconds to generate X̃1, · · · , X̃101 in the same example.) Thus, we

suggest generating a long single run (X̃t : 1 ≤ t ≤ n) and use the average of the weights

K(‖Ỹ1 − y‖), · · · , K(‖Ỹn − y‖) as an estimator of P(Y0 = y|θ = θi) instead of generating

multiple simulation runs and averaging the weights assigned to Ỹn in each run. Plugging the

average weight into P(Y0 = y|θ = θi) in (1.2) completes the development of our proposed
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estimator. Our proposed estimator of E(θ|Y0 = y) is given as follows:∑r
i=1 θiKi∑r
i=1Ki

, (1.3)

where Ki =
∑n

j=1K(‖Ỹj(θi) − y‖)/n, Ỹj(θi) = f(Xj(θi)) for 1 ≤ j ≤ n, and (X̃t(θi) : 1 ≤
t ≤ n) is a Markov chain with an arbitrary initial distribution and the same transition

probabilities as those of X when θ∗ = θi.

Our numerical results in Section 3 illustrate that our proposed estimator shows conver-

gence to E(θ|Y0 = y0) as n increases. In addition, our proposed estimator is computed within

a few seconds in all of our numerical examples, thereby demonstrating its computational ef-

ficiency.

In the literature, the problem of estimating an unknown parameter θ∗ has been considered

in two different settings: (1) the case where a realization of the underlying Markov chain X

is observable; and (2) the case where partially observed data Y are observable. In the case

where X is observable, the likelihood function method and the Bayesian approach have been

used as two main approaches. In the likelihood function method, θ∗ is a real parameter that is

used in the density function of (X−m, · · · , X0) and one should be able to write the likelihood

function in terms of the observed data X−m = x−m, · · · , X0 = x0 and θ∗ only; see Basawa

and Prakasa Rao (1980) and the references therein for details. Thus, this approach is not

applicable to our setting since we have only partially observed data Y−m = y−m, · · · , Y0 = y0

at our disposal and we cannot express the likelihood function using y−m, · · · , y0 only. On

the other hand, in the Bayesian approach, θ∗ is viewed as a random variable θ that takes

one of the values in Θ. After observing X−m = x−m, · · · , X0 = x0, one can compute the

conditional expectation of θ given X−m = x−m, · · · , X0 = x0 using Bayes’ rule as follows:

E(θ|X−m = x−m, · · · , X0 = x0) =

∑r
i=1 θiP(X−m = x−m, · · · , X0 = x0|θ = θi)P(θ = θi)∑r
i=1 P(X−m = x−m, · · · , X0 = x0|θ = θi)P(θ = θi)

.

Therefore, our proposed approach can be viewed as an extension of Bayes’ approach to

the case where partially observed data are available. Furthermore, we recognize that the

computational burden of computing P(Y−m = y−m, · · · , Y0 = y0|θ = θi) is heavy, we suggest

a fast and efficient algorithm for estimating P(Y0 = y0|θ = θi) through simulation.

In the case where Y is observable, many researchers have focused on the filtering ap-

proach, which is often referred to as the sequential Monte Carlo method, in order to estimate

E(θ|Y−m = y−m, · · · , Y0 = y0). The filtering approach was originally proposed to compute

the conditional expectation of a certain random variable (rather than a parameter) given
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Y−m = y−m, · · · , Y0 = y0; see Liu and Chen (1995), Casella and Robert (1996), Kitagawa

(1996), Beadle and Djurić (1997), Liu and Chen (1998), Pitt and Shephard (1999), Carpenter

et al. (1999), Pitt and Shephard (1999), Liu (2001), Gilks and Berzuini (2001), Fox (2003),

Künsch (2005), Doucet et al. (2006), Doucet and Johansen (2011), Bhada and Ionides (2014),

Leippold and Yang (2019), and Jacob et al. (2019) for various filtering-based methods. Re-

cently, the filtering approach has been modified so that one can estimate a parameter given

partially observed data (Kantas et al. (2009), Nemeth et al. (2014), Yang et al. (2018)).

Even though filtering-based methods have well-established theories in the literature, one of

their drawbacks is their heavy computational burdens. The filtering approach proceeds by

generating l copies of Xt (for each t ∈ {−m, · · · , 0}), and each copy requires running an

independent simulation. To ensure the convergence of a filtering-based estimator, l needs

to be large, thereby placing a heavy computational burden on the modeler’s side. On the

other hand, the proposed method requires a single simulation run for each candidate of the

unknown parameter. Thus, it carries a significantly reduced computational burden. This

feature will enable managers to use the proposed method when making real-time decisions.

This paper is organized as follows. The proposed method is precisely described in Section

2. In Section 3, we apply the proposed method in two different settings. In Section 3.1,

we consider a Jackson network with three stations, where E(θ|Y0 = y0) is available in a

closed form. Since E(θ|Y0 = y0) is available in a closed form, we can compare our proposed

estimator to the true value of E(θ|Y0 = y0). The results in Section 3.1 indicate that our

proposed estimator successfully converges to the true value of E(θ|Y0 = y0) as n increases.

In Section 3.2, we consider a more realistic example, where E(θ|Y0 = y0) is not available

in a closed form. The results in Section 3.2 illustrate that our proposed estimator shows

convergence as n increases. The proposed estimators are computed within a few seconds in

all of our numerical examples. While conducting numerical experiments, we observed that

E(θ|Y0 = y0, Y−1 = y−1, · · · ) often coincides with the true value of θ∗. In Section 4, we

investigate this issue further and prove that E(θ|Y0 = y0, Y−1 = y−1, · · · , Y−m = y−m) → θ∗

as m→∞ in a specific setting where we can observe the total number of jobs in a network

of queues with an unknown mean interarrival time. Concluding remarks are included in

Section 5.
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2 Proposed Method

In this section, we describe the proposed method more precisely. We assume that the system

under consideration can be simulated by recursively updating some state variables, so it can

be modeled as a general state space Markov chain X = (Xt : −∞ < t < ∞) in the steady

state and the observable process is Y = (Yt : −∞ < t < ∞), where Yt = f(Xt) for some

known function f and t ∈ {· · · ,−1, 0, 1, · · · }. The transition kernel of X depends on some

parameters, one of which is unknown to the modeler. We call the unknown parameter

θ∗ ∈ R. We further assume that the current time is t = 0, and some partially observed data

Y0 = y0, Y−1 = y−1, · · · are available. In this setting, our goal is to estimate the unknown

parameter θ∗ using observed data. We take the view that a modeler has an idea of what

the range of possible values of θ∗ is. Thus, the set Θ = {θ1, · · · , θr} of possible values of θ∗

is assumed to be given to the modeler. We treat θ∗ as a random variable θ (rather than a

static parameter) that takes one of the values in Θ. To simplify the problem, we consider

conditioning only on the most recent observation Y0 = y0. Then, our best guess on θ∗ is the

conditional expectation of θ given Y0 = y0, i.e., E(θ|Y0 = y0).

The question boils down to how to estimate E(θ|Y0 = y0). Using Bayes’ rule, we rewrite

E(θ|Y0 = y0) as

E(θ|Y0 = y0) =

∑r
i=1 θiP(Y0 = y0|θ = θi)P(θ = θi)∑r
i=1 P(Y0 = y0|θ = θi)P(θ = θi)

,

which is further simplified to

E(θ|Y0 = y0) =

∑r
i=1 θiP(Y0 = y0|θ = θi)∑r
i=1 P(Y0 = y0|θ = θi)

, (2.1)

if the modeler draws θ from Θ uniformly.

The key feature of the proposed method is that we estimate E(Y0 = y0|θ = θi) using

Ki =
1

n

n∑
j=1

K(‖Ỹj(θi)− y‖),

where Ỹj(θi) = f(Xj(θi)) for 1 ≤ j ≤ n, and (X̃t(θi) : 1 ≤ t ≤ n) is a Markov chain with an

arbitrary initial distribution and the same transition kernel as that of X when θ∗ = θi.

By replacing E(Y0 = y0|θ = θi) in (2.1) with Ki, we obtain the proposed estimator θ̂n as

follows:

θ̂n =

∑r
i=1 θiKi∑r
i=1Ki
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if the modeler chooses θ = θi uniformly from Θ, or

θ̂n =

∑r
i=1 θiKip(θi)∑r
i=1Kip(θi)

if the modeler chooses θ = θi with probability p(θi) for 1 ≤ i ≤ r.

The proposed estimator can be computed using the following algorithm.

Proposed Method

Step 0. Let Θ = {θ1, · · · , θr} and the kernel function K : R→ R be given.

Step 1. Set i = 1.

Step 2. Set θ = θi. Take a value x0 randomly from the state space of X and set

X̃0(θi) = x0.

Step 3. Generate X̃1(θi), · · · , X̃n(θi) using the same transition probabilities as

those of X when θ = θi. Compute Ỹ1(θi), · · · , Ỹn(θi) using Ỹj(θi) = f(X̃j(θi)) for

1 ≤ j ≤ n.

Step 4. Compute

Ki =
1

n

n∑
j=1

K(‖Ỹj(θi)− y‖),

where ‖(x1, · · · , xd)‖ =
√
x11 + · · ·+ x2d for (x1, · · · , xd) ∈ Rd.

Step 5. If i < r, increase i by 1 and repeat Steps 2 through 4. If i = r, compute

the proposed estimator θ̂n as follows:

θ̂n =

∑r
i=1 θiKi∑r
i=1Ki

.

3 Numerical Results

In this section, we apply the proposed method in two different settings. In Section 3.1, we

consider a Jackson network (a network of queues with exponentially distributed service times

and interarrival times) with three stations, where E(θ|Y0 = y0) is available in a closed form.
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Since E(θ|Y0 = y0) is available in a closed form, we can compare the proposed estimator to

the true value of E(θ|Y0 = y0). In Section 3.2, we turn to a more realistic example, where we

consider a network with three stations whose service times are not exponentially distributed,

so E(θ|Y0 = y0) is not available in a closed form.

3.1 Jackson Network with an Unknown Arrival Rate

We consider a network with three stations, say Stations 1, 2, and 3. Jobs arrive externally

with the interarrival times exponentially distributed with a mean of θ∗. Once a job arrives

externally, it joins Station 1. Each station has a single server and infinite buffer capacity.

The service times at Stations 1, 2, and 3 are independent of each other and follow exponential

distributions with means of 4, 6, and 8.5, respectively. The service times are independent

of the interarrival times. A job leaving Station 1 goes to Station 2 or 3 with probabilities

0.6 and 0.4, respectively. A job leaving Station 2 or 3 leaves the network forever. We

let Xt = (Nt(1), Nt(2), Nt(3)), where Nt(1), Nt(2) and Nt(3) are the numbers of jobs at

Stations 1, 2, and 3 at the tth departure or arrival epoch of jobs. It should be noted that

X = (Xt : −∞ < t <∞) is a general state space Markov chain.

We consider the situation where we can observe the numbers of jobs in Stations 1 and 2

only, and the number of jobs in Station 3 is not observable. Hence, the observable process

is Y = (Yt : −∞ < t < ∞) = ((Nt(1), Nt(2)) : −∞ < t < ∞) and Yt = f(Xt), where

f : R3 → R2 is defined by f(x1, x2, x3) = (x1, x2) for (x1, x2, x3) ∈ R3.

Assuming that the current time is t = 0, our goal is to estimate E(θ|Y0 = (16, 4)).

We assume that the set of possible values for θ∗ is given by Θ = {4.1, 4.3, 4.5, 4.7}.
To compute the proposed estimator θ̂n, we applied the proposed method in Section 2 with

x0 = (0, 0, 0) and K = Kn, which is defined by

Kn(z) =
1√
2π

exp(− z2

2λ2n
)

for z ∈ R, where λn = 3/dn/1000e and dxe is the smallest integer greater than or equal to

x ∈ R.

We repeated this procedure 100 times and obtained 100 independent and identically

distributed (iid) copies of our estimator θ̂n. Based on these 100 copies, we computed the

95% confidence interval of θ̂n and the average time required to generate a copy of θ̂n. Table

1 reports these 95% confidence intervals and the average times for a variety of n values. The
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true value of E(θ|Y0 = (16, 4)) can be computed using (1.2) and the fact that

P(Y0 = (16, 4)|θ = θi) = (1− θi/4)(θi/4)16(1− θi/6)(θi/4)4

for 1 ≤ i ≤ 4; see, for example, Equation (2.5) on page 17 of Chen and Yao (2001). The

true value of E(θ|Y0 = (16, 4)) is reported in the last row of Table 1. Table 1 shows that the

proposed estimator θ̂n converges to the true value of E(θ|Y0 = (16, 4))) as n increases.

[INSERT TABLE 1 HERE.]

3.2 Jackson Network with an Unknown Service Rate

We consider the same problem setting as in Section 3.1, except that we now assume that

• the mean interarrival time is known to be 4.3,

• the mean service time at Station 1 is the unknown parameter θ∗. The set of possible

values of θ∗ is given by Θ = {3.6, 3.8, 4.0, 4.2}, and

• we can only observe the number of jobs in Station 1, i.e., the observable process is

Y = (Yt : −∞ < t <∞) = (Nt(1) : −∞ < t <∞) and Yt = f(Xt), where f : R3 → R
is given by f(x1, x2, x3) = x1 for (x1, x2, x3) ∈ R3.

We generated 100 iid copies of our estimator θ̂n of E(θ|Y0 = 16). Based on these 100 copies,

we computed the 95% confidence intervals of θ̂n and the average time required to generate

a copy of θ̂n. Table 2 reports these 95% confidence intervals and the average times for a

variety of n values. The true value of E(θ|Y0 = 16) is computed in a similar way to Section

6.1 and is reported in the last row of Table 2. Table 2 shows that the proposed estimator θ̂n

converges to the true value of E(θ|Y0 = 16) as n increases.

[INSERT TABLE 2 HERE.]

3.3 Non-Jackson Network with an Unknown Arrival Rate

We consider a network with three stations, say Stations 1, 2, and 3. Jobs arrive externally

with the interarrival times uniformly distributed over {θ∗ − 1, θ∗, θ∗ + 1}. Thus, the mean

interarrival time is the unknown parameter θ∗. Once a job arrives externally, it joins Station

1. Each station has a single server with a buffer capacity of 40. The service times at

Stations 1, 2, and 3 are independent of each other and are uniformly distributed over {4, 5, 6},
{6, 7, 8, 9, 10}, and {10, 11, 12, 13, 14, 15}, respectively. The service times are independent of

10



the interarrival times. A job leaving Station 1 goes to Station 2 or 3 with probabilities

0.6 and 0.4, respectively. A job leaving Station 2 or 3 leaves the network forever. We

let Xt = (Nt(1), Nt(2), Nt(3), St(1), St(2), St(3), At), where Nt(1), Nt(2), and Nt(3) are the

numbers of jobs at Stations 1, 2, and 3 at the beginning of the tth time period, respectively,

and St(1), St(2), and St(3) are the amounts of time that have passed since service was

initiated in Stations 1, 2, and 3, respectively (if there is no job at the server of Station i for

i = 1, 2, 3, St(i) is set to be −1), and At is the amount of time that has passed since the last

job arrived externally. It should be noted that X = (Xt : −∞ < t < ∞) is a general state

space Markov chain.

We consider the situation where we can only observe the numbers of jobs in Stations 1, 2,

and 3. The elapsed service times and the elapsed interarrival time are not observable. Hence,

the observable process is Y = (Yt : −∞ < t < ∞) = ((Nt(1), Nt(2), Nt(3)) : −∞ < t < ∞)

and Yt = f(Xt), where f : R7 → R3 is given by f(x1, x2, x3, x4, x5, x6, x7) = (x1, x2, x3) for

(x1, x2, x3, x4, x5, x6, x7) ∈ R7.

Assuming that the current time is t = 0, our goal is to estimate E(θ|Y0 = (12, 6, 13)). We

assume that the set of possible values for θ∗ is given by Θ = {4, 5, 6, 7, 8}. To compute the

proposed estimator θ̂n, we applied the proposed method in Section 2 in the same manner as

in Section 3.1. We generated 100 iid copies of θ̂n. Based on these 100 copies, we computed

the 95% confidence interval of θ̂n and the average time required to generate a copy of θ̂n.

Table 3 reports these 95% confidence intervals and the average times for a variety of n values.

In Table 4, we set Θ = {2, 3, 4, 5, 6, 7, 8} and repeated the above procedure to obtain the

proposed estimator θ̂n of E(θ|Y0 = (18, 38, 10)) for a variety of n values.

In both Tables 3 and 4, the proposed estimator is computed in a few seconds and shows

convergence as n increases.

[INSERT TABLES 3 AND 4 HERE.]

3.4 Non-Jackson Network with an Unknown Service Rate

We consider the same problem setting as in Section 3.3, except that we now assume that

• the interarrival times are known to follow a uniform distribution over {4, 5, 6},

• the mean service time at Station 1 is the unknown parameter θ∗. The service times

at Station 1 follow a uniform distribution over {θ∗ − 1, θ∗, θ∗ + 1}. The set of possible

values of θ∗ is given by Θ = {4, 5, 6, 7, 8}, and
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• we can only observe the number of jobs at Station 1, i.e., Yt = Nt(1) for −∞ < t <∞
and Yt = f(Xt), where f : R7 → R is given by f(x1, x2, x3, x4, x5, x6, x7) = x1 for

(x1, x2, x3, x4, x5, x6, x7) ∈ R7.

We generated 100 iid copies of the proposed estimator θ̂n of E(θ|Y0 = 12). Based on these

100 copies, we computed the 95% confidence interval of θ̂n and the average time required to

generate a copy of θ̂n. Table 5 reports these 95% confidence intervals and the average times

for a variety of n values. In Table 6, we set Θ = {2, 3, 4, 5, 6, 7, 8} and repeated the above

procedure to obtain the proposed estimator θ̂n of E(θ|Y0 = 18) for a variety of n values.

In both Tables 5 and 6, the proposed estimator is computed in a few seconds and shows

convergence as n increases.

[INSERT TABLES 5 AND 6 HERE.]

4 Justification of the Conditional Expectation

While conducting numerical experiments, we observed that E(θ|Y0 = y0, Y−1 = y−1, · · · )
often coincides with the true value of θ∗. In this section, we investigate this issue further

and prove that E(θ|Y0 = y0, Y−1 = y−1, · · · , Y−m = y−m) → θ∗ as m → ∞ in a specific

setting. More precisely, we consider a situation where we observe the total number of jobs

in a network of queues with an unknown interarrival rate. The system under consideration

can be described as follows.

We consider a network with J stations, say Stations 1 through J , each with one server

and Nj waiting rooms for 1 ≤ j ≤ J . The service times of jobs at Station j are iid, following

an exponential distribution with a mean of 1/λj for j = 1, · · · , J . Jobs travel among the

stations following a routing matrix (pjk : j, k = 1, · · · , J), where pjk is the probability that

a job leaving Station j will go to Station k for 1 ≤ j, k ≤ J . At each station, all jobs are

served on a first-come-first-served basis. If a job entering a station finds that the server

and all the waiting rooms are occupied, then it leaves the network forever. Jobs arrive from

outside, following a Poisson process with rate θ∗ > 0. Each arrival is independently routed

to Station j with probability p0j > 0 and p01 + · · ·+ p0J = 1. For t ∈ {· · · ,−1, 0, 1, · · · } and

j = {1, · · · , J}, let Xt(j) be the number of jobs at Station j at the tth departure or arrival

epoch of the jobs. Then X = (Xt : −∞ < t < ∞) = ((Xt(1), · · · , Xt(J)) : −∞ < t < ∞)

is a Markov chain with a finite state space. We assume that we can only observe the total

number of jobs in the network, so Yt is the total number of jobs in the network at the tth
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transition epoch. We also assume that λ1, · · · , λJ , (pjk : 1 ≤ j, k ≤ J), and p0j for 1 ≤ j ≤ J

are known, but θ∗ is unknown.

The following assumption is needed.

A1: Assume that each station may both receive external input and deliver external

output (possibly via other stations), i.e., for each j (i) either p0j > 0 or p0l1pl1l2 · · · plvj
for some l1, · · · , lv and (ii) either 1 − (pj1 + · · · + pjJ) > 0 or pjl1pl1l2 · · · (1 − (plv1 +

· · ·+ plvJ)) > 0 for some l1, · · · , lv.

A1 implies the irreducibility of (Xt : −∞ < t < ∞). Since X is a finite-state Markov

chain, it is positive recurrent. Hence, the irreducibility of X implies the existence of a unique

stationary measure, say πθ∗ . We need the following two additional assumptions.

A2: X is in the steady state, i.e., Xt is distributed according to its stationary distri-

bution πθ∗ for t ∈ {· · · ,−1, 0, 1, · · · }.

A3: θ is a random variable that takes on one of the values in Θ = {θ1, · · · , θr}, where

one of θ1, · · · , θr is equal to θ∗.

Under A1, A2, and A3, the following theorems establish E(θ|Y0 = y0, · · · , Y−m = y−m)→
θ∗ as m → ∞, justifying the use of the conditional expectation as an estimator of θ∗. In

the proof of Theorem 1, Eθ and Pθ denote the conditional expectation given θ∗ = θ and the

conditional probability given θ∗ = θ, respectively.

Theorem 1. Assume A1–A3. If θk 6= θ∗ for k = 1, · · · , r,

P(θ = θk|Y0 = y0, · · · , Y−m = y−m)→ 0

as m→∞. Also,

P(θ = θ∗|Y0 = y0, · · · , Y−m = y−m)→ 1

as m→∞.

Proof of Theorem 1. Since

P(θ = θk|Y0 = y0, · · · , Y−m = y−m) =
Pθk(Y0 = y0, · · · , Y−m = y−m)P(θ = θk)∑r
j=1 Pθj(Y0 = y0, · · · , Y−m = y−m)P(θ = θj)

,

it suffices to show that
Pθk(Y0 = y0, · · · , Y−m = y−m)

Pθ∗(Y0 = y0, · · · , Y−m = y−m)
→ 0 (4.1)
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as m→∞ for θk 6= θ∗.

To simplify the notation, we will focus on the case where there are only 2 stations in the

network, i.e., J = 2. Generalization to the case where J > 2 is straightforward.

For any nonnegative integers j and k, we denote the stationary probability that Xt(1) = j

and Xt(2) = k given that the arrival rate equals θ by πθ(j, k).

We first note that (Yt : −∞ < t < ∞) itself is a time-homogeneous Markov chain with

the following transition probabilities:

Pθ(Yt+1 = 1|Yt = 0) = 1

Pθ(Yt+1 = 0|Yt = 1) = πθ(1, 0)
λ1(1− p11 − p12)

θ + λ1
+ πθ(0, 1)

λ2(1− p21 − p22)
θ + λ2

Pθ(Yt+1 = 1|Yt = 1) = πθ(1, 0)
λ1(p11 + p12)

θ + λ1
+ πθ(0, 1)

λ2(p21 + p22)

θ + λ2

Pθ(Yt+1 = 2|Yt = 1) = πθ(1, 0)
θ

θ + λ1
+ πθ(0, 1)

θ

θ + λ2
.

For j ≥ 2,

Pθ(Yt+1 = j − 1|Yt = j) =

N1+1∑
k=1

πθ(k, 0)
λ1(1− p11 − p12)

θ + λ1
+

N2+1∑
k=1

πθ(0, k)
λ2(1− p21 − p22)

θ + λ2

+

(
N2+1∑
l=1

N1+1∑
k=1

πθ(k, l)

)
λ1(1− p11 − p12) + λ2(1− p21 − p22)

θ + λ1 + λ2

Pθ(Yt+1 = j|Yt = j) =

N1+1∑
k=1

πθ(k, 0)
λ1(p11 + p12)

θ + λ1
+

N2+1∑
k=1

πθ(0, k)
λ2(p21 + p22)

θ + λ2

+

(
N2+1∑
l=1

N1+1∑
k=1

πθ(k, l)

)
λ1(p11 + p12) + λ2(p21 + p22)

θ + λ1 + λ2

Pθ(Yt+1 = j + 1|Yt = j) =

N1+1∑
k=1

πθ(k, 0)
θ

θ + λ1
+

N2+1∑
k=1

πθ(0, k)
θ

θ + λ2

+

(
N2+1∑
l=1

N1+1∑
k=1

πθ(k, l)

)
θ

θ + λ1 + λ2
.

For j ≥ 0, we will denote

Pθ(Yt+1 = j − 1|Yt = j) , Pθ(j,−)

Pθ(Yt+1 = j|Yt = j) , Pθ(j, 0)

Pθ(Yt+1 = j + 1|Yt = j) , Pθ(j,+).
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and denote the stationary distribution of (Yt : −∞ < t <∞) by πy,θ∗ when the arrival rate

is θ∗.

Now we note that by Theorem 1.23 on page 26 of Durrett (2011), for each j ≥ 0, we have

Nj+/s → πy,θ∗(j)Pθ∗(j,+)

Nj0/s → πy,θ∗(j)Pθ∗(j, 0) (4.2)

Nj−/s → πy,θ∗(j)Pθ∗(j,−)

almost surely as s→∞, where given that the arrival rate is θ∗, Nj+ is the number of times

Yk = j and Yk+1 = Yk + 1 for −m ≤ k ≤ −1, Nj0 is the number of times Yk = j and

Yk+1 = Yk for −m ≤ k ≤ −1, and Nj− is the number of times Yk = j and Yk+1 = Yk − 1 for

−m ≤ k ≤ −1, i.e.,

Nj+ =
−1∑

k=−m

I(Yk = j, Yk+1 = Yk + 1|θ = θ∗),

Nj0 =
−1∑

k=−m

I(Yk = j, Yk+1 = Yk|θ = θ∗), and

Nj− =
−1∑

k=−m

I(Yk = j, Yk+1 = Yk − 1|θ = θ∗).

Without loss of generality, we can assume that we have a sample path y−m, · · · , y0 where

(4.2) is satisfied.

Next, we note that

Pθ(Y0 = y0, · · · , Y−m = y−m|θ) = Pθ(Y0 = y0)

N1+N2+2∏
j=0

Pθ(j,+)Nj+Pθ(j, 0)Nj0Pθ(j,−)Nj−

and that

Pθ(Y0 = y0, · · · , Y−m = y−m)

Pθ∗(Y0 = y0, · · · , Y−m = y−m)
=

Pθ(Y0 = y0)

Pθ∗(Y0 = y0)

·
N1+N2+2∏

j=0

(
Pθ(j,+)

Pθ∗(j,+)

)Nj+ ( Pθ(j, 0)

Pθ∗(j, 0)

)Nj0 ( Pθ(j,−)

Pθ∗(j,−)

)Nj−
.

To prove (4.1), it suffices to show that for each j ≥ 1 and θ 6= θ∗,

(1/m) log

(
Pθ(j,+)

Pθ∗(j,+)

)Nj+ ( Pθ(j, 0)

Pθ∗(j, 0)

)Nj0 ( Pθ(j,−)

Pθ∗(j,−)

)Nj−
→ aj (4.3)
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as m→∞ for some negative number aj.

To prove (4.3), we note that

1

m
log

(
Pθ(j,+)

Pθ∗(j,+)

)Nj+ ( Pθ(j, 0)

Pθ∗(j, 0)

)Nj0 ( Pθ(j,−)

Pθ∗(j,−)

)Nj−
=
Nj+

m
log

(
Pθ(j,+)

Pθ∗(j,+)

)
+
Nj0

m
log

(
Pθ(j, 0)

Pθ∗(j, 0)

)
+
Nj−

m
log

(
Pθ(j,−)

Pθ∗(j,−)

)
→ πy,θ∗(j)Pθ∗(j,+) log

(
Pθ(j,+)

Pθ∗(j,+)

)
+ πy,θ∗(j)Pθ∗(j, 0) log

(
Pθ(j, 0)

Pθ∗(j, 0)

)
+ πy,θ∗(j)Pθ∗(j,−) log

(
Pθ(j,−)

Pθ∗(j,−)

)
= πy,θ∗(j) log

(
Pθ(j,+)

Pθ∗(j,+)

)Pθ∗ (j,+)(
Pθ(j, 0)

Pθ∗(j, 0)

)Pθ∗ (j,0)
·
(

1− Pθ(j,+)− Pθ(j, 0)

1− Pθ∗(j,+)− Pθ∗(j, 0)

)1−Pθ∗ (j,+)−Pθ∗ (j,0)

, ρ(θ)

as m→∞ almost surely.

We next prove that ρ(θ) is increasing when θ < θ∗, decreasing when θ > θ∗, and zero

when θ = θ∗. To prove this, we note that

dρ

dθ
= πy,θ∗(j)

(
Pθ∗(j,+)

Pθ(j,+)

dPθ(j,+)

dθ
+
Pθ∗(j, 0)

Pθ(j, 0)

dPθ(j, 0)

dθ

−
(

1− Pθ∗(j,+)− Pθ∗(j, 0)

1− Pθ(j,+)− Pθ(j, 0)

)(
dPθ(j,+)

dθ
+
dPθ(j, 0)

dθ

))
,

Pθ∗(j,+) is a decreasing function of θ, Pθ∗(j, 0) is a decreasing function of θ, 1− Pθ∗(j,+)−
Pθ∗(j, 0) is an increasing function of θ, and hence,

dρ

dθ
> 0 when θ < θ∗

dρ

dθ
< 0 when θ∗ < θ, and

dρ

dθ
= 0 when θ = θ∗.

Since ρ(θ) ↓ −∞ as θ ↓ 0, ρ(θ) ↓ −∞ as θ ↑ ∞, we can conclude that ρ(θ) is increasing when

θ < θ∗, decreasing when θ > θ∗, and zero when θ = θ∗, and hence, (4.3) follows.

Theorem 2. Under A1, A2, and A3,

E(θ|Y0 = y0, · · · , Y−m = y−m)→ θ∗
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as m→∞ a.s.

Proof of Theorem 2. By Theorem 1,

E(θ|Y0 = y0, · · · , Y−m = y−m) =
r∑
i=1

θiP(θ = θi|Y0 = y0, · · · , Y−m = y−m)→ θ∗

as m→∞, which completes the proof of Theorem 2.

Remark 1. Theorem 2 states that the conditional expectation E(θ|Y0 = y0, · · · , Y−m = y−m)

converges to the true value of the unknown parameter θ∗ as the length of the historical data

increases to infinity. This, in turn, implies that the proposed algorithm, when modified to

compute the conditional expectation given the full history of Y , computes the true value of

the unknown parameter.

5 Conclusions

In this paper, we proposed an efficient algorithm for estimating an unknown parameter θ∗

that is required to describe the dynamics of a stochastic process X = (Xt : −∞ < t < ∞)

when partially observed data Y0 = y0, Y−1 = y−1, · · · are available. Our proposed method

treats θ∗ as a random variable θ and computes E(θ|Y0 = y0) as an estimator of θ∗. The key

idea of the proposed method is to express the conditional expectation as a weighted sum of

reverse conditional probabilities using Bayes’ rule and to compute the reverse conditional

probabilities using simulation. Our numerical results reveal that the proposed estimator is

computed within a few seconds and successfully converges to the true value of E(θ|Y0 = y0)

as the computer time allocated to the simulation increases.

Future research topics include (1) extending the proposed method to the case where θ∗

is multidimensional and Θ is continuous, (2) extending the proposed method to the case

where we wish to estimate E(θ|Y0 = y0, Y−1 = y−1, · · · , Y−m = y−m) for some m > 1, and (3)

justifying the proposed method rigorously by establishing the consistency of the proposed

method.
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